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Outline

▸ The Competitive Equilibrium (Solution of the Model)
▸ Firms’ profit maximisation
▸ Individuals’ utility maximisation
▸ Market clearing conditions
▸ Transition equation
▸ Steady state and convergence to steady state

▸ Efficiency of the competitive equilibrium
▸ Pareto-efficiency
▸ Golden-rule
▸ Capital under and over accumulation
▸ Dynamic inefficiency
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The Competitive Equilibrium (Solution of the Model)

▸ Equations from last lecture:

Lt = (1 + n)Lt−1 (1)

U(c1t, c2t+1) = u(c1t) + βu(c2t+1) (2)

u(c) = c1−θ − 1
1 − θ

(3)

Yt = F (Kt,AtL
D
t ), yt = f(kt) (4)
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Firm’s Problem

▸ Profit maximisation

max
kt,LD

t

F (Kt,AtL
D
t ) − rtKt −wtAtL

D
t = AtL

D
t (f(kt) − rtkt −wt)

FOCs:

rt = f ′(kt) (5)

wt = f(kt) − f ′(kt)kt (6)
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Individual’s Problem (1 of 2)

▸ Utility maximisation

max
st

U(c1t, c2t+1) = u(c1t) + βu(c2t+1)

s.t c1t + st = wtAt (7)

c2t+1 = (1 + rt+1)st (8)

▸ This problem can be transformed into a unconstrained maximisation
problem:

max
st

U = u(wtAt − st) + βu[(1 + rt+1)st]

Under our assumption on u, the objective function is strictly concave
in st (i.e.

∂2U
∂s2t
< 0), so the maximisation problem has a unique

solution.
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Individual’s Problem (2 of 2)

▸ The Euler equation:

U1(c1t)
U2(c2t+1)

= u′(c1t)
βu′(c2t+1)

= 1 + rt+1 (9)

Combining the budget constraints (7)-(8) and the Euler equation (9),
yields the equation that determines st:

u′(wtAt − st)
βu′[(1 + rt+1)st]

= 1 + rt+1 (10)

▸ The problem can also be formulated as a constrained maximisation
problem:

max
st

U(c1t, c2t+1) = u(c1t) + βu(c2t+1)

s.t. c1t +
1

1 + rt+1
c2t+1 = Atwt (11)

where Eq.(11) is an individual’s lifetime budget constraint
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Restrictions on Utility Function
▸ An example to solve st: Let u(c) = c1−θ−1

1−θ
such that

u′(c) = c−θ

Therefore, Eq.(9) becomes:

c−θ1t
c−θ2t+1

= β(1 + rt+1)

Substituting Eq.(7) and (8) into the equation above, can solve for st (see
Appendix 1):

st =
β

1
θ

β
1
θ + (1 + rt+1)1−

1
θ

wtAt (12)

▸ Note that the amount of saving is a fraction of the individual’s total income
(wtAt) when young. This fraction is the saving rate (endogenously
determined!) denote as:

s(rt+1) =
β

1
θ

β
1
θ + (1 + rt+1)1−

1
θ

∈ (0,1) (13)
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Saving Rate and Real Interest Rate

▸ How the saving rate s(r) depends on r?

▸ First, find s′(r) (see Appendix 2):

s′(r) = (1
θ
− 1) β

1
θ (1 + r)−

1
θ

[β
1
θ + (1 + rt+1)1−

1
θ ]2

▸ The sign of s′(r) coincides with 1
θ − 1. Therefore,

s′(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

> 0 if θ < 1
< 0 if θ > 1
= 0 if θ = 1
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Income Effect vs. Substitution Effect

▸ Notice that a rise in r has both an income and substitution effect.
▸ income effect: positive for c1t since consumer is a net saver
▸ substitution effect: negative for c1t since the cost of the time t

consumption is higher

▸ When θ < 1, the elasticity of substitution between consumption in the
two periods 1

θ > 1, individuals are more willing to substitute
consumption between two periods, hence substitution effect
dominates, and individuals reduce their consumption when young and
increase saving rate, so s′(r) > 0.

▸ When θ > 1, the elasticity of substitution between consumption in the
two periods 1

θ < 1, individuals are less willing to substitute
consumption between two periods, hence income effect dominates, so
s′(r) < 0.

▸ In the special case of θ = 1, s(r) = β
1+β , s

′(r) = 0, income and
substitution effects exactly cancel out.
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Market Clearing Conditions (1 of 2)

▸ There are THREE markets: labour, capital, and output. Only need to
consider market clearing conditions in two markets, then the market
clearing condition for the third market would be automatically
satisfied. (this is called Walras’ Law, see Appendix 3 for proof)

▸ Total labour supplied by individuals in period t is Lt and total labour
demanded by firms in period t is LD

t . Labour market clearing
condition:

LD
t = Lt (14)

▸ Total savings carried to period t + 1 by individuals is Ltst. Total
capital demanded by firms in period t + 1 is Kt+1. Capital market
clearing condition:

Kt+1 = Ltst (15)
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Market Clearing Conditions (2 of 2)

▸ In the Solow-Swan Model, the equilibrium is characterised by a
transition equation that describe how kt evolves over time. We use
CRRA utility function to illustrate how we can derive it.

▸ For the CRRA utility, st = s(rt+1)Atwt, where s(rt+1) is defined in
Eq.(13). Hence, the market clearing condition for capital market is:

Kt+1 = Lts(rt+1)Atwt (16)

▸ Dividing both sides of Eq.(16) by At+1Lt+1 yields:

kt+1 =
1

(1 + n)(1 + g)
s(rt+1)wt (17)
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Transition Equation
▸ Recall from Eq.(5) and (6):

rt+1 = f ′(kt+1), wt = f(kt) − f ′(kt)kt

Substituting rt+1 and wt into Eq.(17), get:

kt+1 =
1

(1 + n)(1 + g)
s[f ′(kt+1)][f(kt) − f ′(kt)kt]

kt+1 =
1

(1 + n)(1 + g)
β

1
θ

β
1
θ + [1 + f ′(kt+1)]1−

1
θ

[f(kt) − f ′(kt)kt] (18)

Notice that Eq.(18) is the transition equation, which implicitly defines
kt+1 as a function of kt.

▸ With given k0 = K0

A0L0
(where L0 = (1 + n)L−1), and At and Lt

evolving exogenously, Eq.(18) fully characterises the equilibrium
dynamics of the system.
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Steady State

▸ Steady state and the convergence to steady state
▸ If there exists a k∗ such that kt+1 = kt = k∗ satisfying the transition

equation (18), then such a k∗ is steady state value of kt.
▸ Once kt converges to k∗, the economy reaches its stationary

equilibrium or balanced growth path.
▸ Properties of the economy on its balanced growth path are similar as

those of the Solow-Swan economy on its balanced growth path.
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Features of Balanced Growth Path

▸ The interest rate is a constant (rt = f ′(k∗)) such that the saving rate
(s(rt+1)) is a constant (but endogenously determined).

▸ Wage rate per worker Atwt grows at rate g.

▸ Aggregate output, capital stock, consumption and the investment all
grow at rate n + g.

▸ Output per worker and capital per worker all grow at rate g. The
capital output ratio is a constant.

▸ A young individual’s saving grows at rate g (st = Kt+1

Lt
), such that a

young individual’s consumption (c1t) and old individual’s consumption
(c2t+1) both grow at rate g.
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Steady State of OLG Model

Proposition

In the OLG model with two-period lived households, Cobb-Douglas
technology, and CRRA preferences, there exists a unique steady-
state equilibrium with the capital-labour ratio k∗, and for any θ > 0,
this equilibrium is globally stable for all k(0) > 0.
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Proof of Proposition
▸ Now consider a special case of logarithmic utility (θ = 1) and the

Cobb-Douglas production (f(k) = kα). In this case,

s(r) = β

1 + β
rt+1 = f ′(kt+1) = αkα−1t+1

wt = f(kt) − f ′(kt)kt = kαt − αkα−1t kt = (1 − α)kαt
▸ Therefore, the transition equation (18) becomes:

kt+1 =
1

(1 + n)(1 + g)
β

1 + β
(1 − α)kαt (19)

▸ A unique non-zero steady state of k is given by:

k∗ = [ 1 − α
(1 + n)(1 + g)(1 + 1

β
)
]

1
1−α (20)

▸ In this case, the convergence to k∗ is globally stable.
▸ Wherever kt starts (other than 0), it converges to k∗.
▸ The convergence is faster when kt is further away from k∗.
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Phase Diagram of the Canonical OLG Model
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Multiple Steady States

▸ The Solow-Swan economy has a unique balanced growth path and it
is globally stable.

▸ However, with a general production function and CRRA utility
function, it is possible that the Diamond economy has multiple steady
states and some steady states are NOT stable.
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Pareto Optimality of the Competitive Equilibrium

▸ Question: Is the competitive equilibrium Pareto-efficient or Pareto
optimal?

▸ Pareto efficiency
▸ Definition: An allocation is Pareto-efficient if it is feasible and there is

no other feasible allocation that increase one party’s welfare without
hurting another party’s welfare. (Here, a feasible allocation means the
allocation satisfies the resource constraint of the economy.)

▸ In general, Pareto-efficient allocations are feasible allocations that
maximise some special welfare function.

▸ If an equilibrium allocation is not Pareto-efficient, there is space for
government intervention to improve social welfare.
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k∗ vs. kGR (1 of 2)

The golden-rule allocation:

▸ To evaluate the Pareto-efficiency of the competitive equilibrium, we
compare it with the golden-rule allocation. Specifically, we compare
k∗ with the golden rule kGR.

▸ Recall that kGR maximises steady state consumption, as in the
Solow-Swan model, we consider the resource constraint of the
economy, which states that the sources and uses of goods in an
economy must be equal.

▸ In period t, the resource constraint for Diamond economy is:

F (Kt,AtLt) = Ltc1t +Lt−1c2t + (Kt+1 −Kt) (21)

where Kt+1 −Kt is the total investment in period t (It).
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k∗ vs. kGR (2 of 2)

▸ For simplicity, let At = A for all t from now on, i.e. g = 0. Define
kt = Kt

ALt
, then dividing both sides of Eq.(21) by ALt gives:

f(kt) =
c1t
A
+ c2t
A(1 + n)

+ [(1 + n)kt+1 − kt]

▸ In a steady state, kt,
c1t
A , and c2t

A are all constant: kt = k, c1t
A =

c1
A ,

c2t
A =

c2
A for all t. Then the above resource constraint is reduced to:

c1
A
+ c2
A(1 + n)

= f(k) − nk (22)

▸ Eq.(22) is the stationary resource constraint for the Diamond
economy with At = A for all t.
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Is kGR Pareto-efficient?

▸ It is clear from Eq.(22) that for kGR to maximise steady state
consumption of individuals, it must maximise f(k) − nk. That is,
kGR satisfies:

f ′(kGR) = n (23)

▸ Is the golden-rule allocation Pareto-efficient?

▸ It can be shown that the golden rule allocation maximises the steady
state lifetime utility of future generations among all stationary feasible
allocations. That is, it solves the maximisation problem below (see
Appendix 4).

max
c1,c2,k

U(c1, c2)

s.t c1 +
c2

1 + n
= f(k) − nk

▸ This implies that the golden-rule allocation is Pareto-efficient.
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Is Competitive Equilibrium Pareto-efficient?

▸ We discuss this by comparing k∗ with kGR. First, note that there is
no guarantee that k∗ = kGR. For example, for logarithmic utility and
Cobb-Douglas production:

k∗ = [ 1 − α
(1 + n)(1 + g)(1 + 1

β )
]

1
1−α

So,

f ′(k∗) = αk∗
α−1

= α

1 − α
(1 + n)(1 + g)(1 + 1

β
)

▸ It is clear that there is no guarantee that f ′(k∗) = n. However, this
does not necessarily mean the equilibrium is not Pareto-efficient. Let
us discuss two possible cases: k∗ < kGR, k

∗ > kGR.
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k∗ < kGR

▸ This is called under-accumulation of capital.
▸ In this case, by concavity of f(⋅), we have rt = f ′(k∗) > f ′(kGR) = n,

i.e. the interest rate is greater than the population growth rate.
▸ How can the government encourage saving to increase capital?
▸ The government can encourage saving by subsidising young individuals.

To maintain a balanced budget, the government must tax old
individuals to fund the subsidy. Would the current old generation like
this plan?

▸ Since the old attempt to encourage saving would hurt current old
generation, a competitive equilibrium with under-accumulation of
capital is Pareto-efficient.
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k∗ > kGR

▸ This is called over-accumulation of capital.
▸ In this case, by concavity of f(⋅), we have rt = f ′(k∗) < f ′(kGR) = n,

i.e. the interest rate is lower than the population growth rate.
▸ The economy is said to be dynamically inefficient.
▸ In this case, the competitive equilibrium is NOT Pareto-efficient.
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Proposition

Proposition

In the baseline OLG economy, the competitive equilibrium is NOT
necessarily Pareto optimal. More specifically, when rt < n, the
economy is dynamically inefficient. In this case, it is optimal to
reduce the capital stock starting from the competitive steady state
and increase the consumption level of all generations.
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Why Inefficiency?

▸ Pecuniary externalities are important.
▸ Individuals from generation t face wages determined by the savings

(capital stock) decisions of those from generation t − 1.
▸ An individual from generation t − 1 receives a rate of return on her

savings determined by the savings decisions of others of generation
t − 1.

▸ Dynamic inefficiency arises from overaccumulation that results from
the need of the current generation to save for old age. The more they
save, the lower is the return, the more they are encouraged to save.

▸ Notice that the possibility of inefficiency also stems from the dynamic
population structure in the economy.

▸ Thus, if there was some way available to provide for the consumption
when old, overaccumulation problem might be ameliorated.
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The Role of Social Security in Capital Accumulation

▸ Pay-as-you-go (unfunded) system: transfers from the young go
directly to the current old. Discourages aggregate savings; in case of
dynamic inefficiency, may lead to a Pareto improvement.

▸ Consider the “Pay-as-you-go-social security”, if the time horizon for
the economy is finite, t = 0,1, .., T , i.e. generations born in period T
would die when young . Would the “Pay-as-you-go-social security”
still work?

▸ It is clear that such a policy would hurt generation T young
individuals. So if the time horizon is finite, the equilibrium with
capital over-accumulation would also be Pareto-efficient. Therefore,
the possibility of inefficiency stems from the dynamic population
structure in the Diamond model.
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Appendix 1 (1 of 2)

Let u(c) = c1−θ

1−θ , show that st = β
1
θ

β
1
θ +(1+rt+1)

1− 1
θ
wtAt.

Solution: The individual utility maximisation problem is formulated as:

max
c1t,c2t+1

U(c1t, c2t+1) =
c1−θ1t − 1
1 − θ

+ β c
1−θ
2t+1 − 1
1 − θ

s.t. c1t + st = wtAt

c2t+1 = (1 + rt+1)st
FOC:

∂U

∂st
= U1(c1t, c2t+1)

∂c1t
∂st
+U2(c1t, c2t+1)

∂c2t+1
∂st

= c−θ1t (−1) + βc−θ2t+1(1 + rt+1) = 0

Thus, we get the consumption Euler equation:

c−θ1t
c−θ2t+1

= β(1 + rt+1)
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Appendix 1 (2 of 2)

i.e.

(c2t+1
c1t
)θ = β(1 + rt+1) or

c2t+1
c1t
= β

1
θ (1 + rt+1)

1
θ

Substituting the budget constraints when young and when old into the
equation above, can get:

(1 + rt+1)st
wtAt − st

= β
1
θ (1 + rt+1)

1
θ

(1 + rt+1)st = β
1
θ (1 + rt+1)

1
θwtAt − β

1
θ (1 + rt+1)

1
θ st

[1 + rt+1 + β
1
θ (1 + rt+1)

1
θ ]st = β

1
θ (1 + rt+1)

1
θwtAt

st =
β

1
θ (1 + rt+1)

1
θ

1 + rt+1 + β
1
θ (1 + rt+1)

1
θ

wtAt

st =
β

1
θ

β
1
θ + (1 + rt+1)1−

1
θ

wtAt
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Appendix 2

Find s′(r)

Solution:

s′(r) = β
1
θ [−

(1 − 1
θ )(1 + r)

1− 1
θ
−1

(β
1
θ + (1 + rt+1)1−

1
θ )2
]

= β
1
θ [−

(1 − 1
θ )(1 + r)

−
1
θ

(β
1
θ + (1 + rt+1)1−

1
θ )2
]

= (1
θ
− 1) β

1
θ (1 + r)−

1
θ

[β
1
θ + (1 + r)1−

1
θ ]2
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Appendix 3
Prove Walras’ Law (i.e. If a price vector p⃗∗ = (p∗1, p

∗

2) clears the market for g1, then the
market for g2 must be cleared.)

Proof.

First notice that Walras’ Law guarantees that the value of aggregate excess demand is equal to
zero (i.e. D ≡ 0) given any price. The mathematical expression is as below:

p1z1(p1, p2) + p2z2(p1, p2) = 0 (A.1)

where z(p) is the aggregate excess demand function

Plug p∗1 and p∗2 into Eq.(A.1), get:

p∗1z1(p
∗

1 , p
∗

2) + p
∗

2z2(p
∗

1 , p
∗

2) = 0 (Walras’ Law holds for (p∗1 , p
∗

2))

But (p∗1 , p
∗

2) clears the market for g1 (expressed as the equation below):

z1(p
∗

1 , p
∗

2) = 0 (A.2)

Plug Eq.(A.2) into Eq.(A.1), we obtain:

0 + p∗2z2(p
∗

1 , p
∗

2) = 0

Since p∗2 > 0, z2(p
∗

1 , p
∗

2) = 0.
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Appendix 4 (1 of 2)

Show that the golden-rule allocation solves the following maximisation problem.

max
c1,c2,k

U(c1, c2)

s.t c1 +
c2

1 + n
= f(k) − nk

Solution: Set up the Lagrangian function:

L = U(c1, c2) + λ(f(k) − nk − c1 −
c2

1 + n
)

FOCs:

∂L
c1
= U1(c1, c2) − λ = 0

∂L
c2
= U2(c1, c2) −

λ

1 + n
= 0

∂L
k
= λ(f ′(k) − n) = 0
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Appendix 4 (2 of 2)

▸ From the FOC w.r.t. c1, λ = U1(c1, c2) > 0. Therefore, the FOC w.r.t.
k implies:

f ′(k) = n

▸ This is exactly the condition that determines kGR. With k
determined, c1 and c2 are determined by:

U1(c1, c2)
U2(c1, c2)

= 1 + n

c1 +
c2

1 + n
= f(k) − nk

▸ In fact, this is the way I was taught in my honours year how to find
the golden rule allocation. But for this unit, you are only required to
know how to find kGR using the resources constraint of the economy.
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